วันพุธที่ 14 ธันวาคม พ.ศ. 2559

โอเวอร์โหลด

โอเวอร์โหลด
โอเวอร์โหลดทำงานด้วยความร้อน(Thermal Overload Relay)
     โอเวอร์โหลดประกอบด้วยขดลวดความร้อน
(Heater) พันอยู่บนแผ่นไบเมทัล (Bimetal) ซึ่งทำ
จากโลหะ 2 ชนิดเชื่อมติดกันโก่งตัวได้เมื่อเกิด
ความร้อนขึ้น ขดลวดความร้อนเป็นทางผ่านของ
กระแสจากแหล่งจ่ายไปยังมอเตอร์ เมื่อกระแส
ที่ไหลเข้ามอเตอร์มีค่าสูง ทำให้ชุดขดลวดความร้อน
เกิดความร้อนสูงขึ้น เป็นผลให้แผ่นไบเมทัลร้อน
และโก่งตัวดันให้หน้าสัมผัสปกติปิดของโอเวอร์โหลด
ที่ต่ออนุกรมอยู่กับวงจรควบคุมเปิดวงจร ตัดกระแส
ออกจากคอล์ยแม่เหล็กของคอนแทกเตอร์ จึงทำให้
หน้าสัมผัสหลัก (Main Contact) ของคอนแทกเตอร์
ปลดมอเตอร์ออกจากแหล่งจ่ายเป็นการป้องกัน
มอเตอร์จากความเสียหายได้

     โอเวอร์โหลดรีเลย์มีทั้งแบบธรรมดา คือ เมื่อ
แผ่นไบเมทัลงอไปแล้วจะกลับมาอยู่ตำแหน่ง
เดิม เมื่อเย็นตัวลงเหมือนในเตารีด กับแบบที่มี
รีเซ็ท (Reset) คือ เมื่อตัดวงจรไปแล้ว หน้าสัมผัส
จะถูกล็อกเอาไว้ ถ้าต้องการจะให้วงจรทำงานอีกครั้ง
ทำได้โดยกดที่ปุ่ม Reset ให้หน้าสัมผัสกลับมาต่อ
วงจรเหมือนเดิม 


สัญลักษณ์ของโอเวอร์โหลดรีเลย์แบบมี Reset

   ลักษณะเมื่อเกิดการโอเวอร์โหลดหน้าสัมผัส
จะเปิดออกและจะถูกล็อกเอาไว้ ถ้าต้องการให้

Over Load Relay

โอเวอร์โหลดรีเลย์ (Over Load relay)

โอเวอร์โหลดรีเลย์ (Over Load relay) 

โอเวอร์โหลดรีเลย์ (Over Load relay) คืออะไร

โอเวอร์โหลด (Over Load relay) เป็นอุปกรณ์ป้องกันอุปกรณ์ไฟฟ้า เกินกำลังหรือป้องกันมอเตอร์ ไม่ให้เกิดการเสียหาย เมื่อมีกระแสไหลเกินพิกัด โดยมีส่วนประกอบภายนอกที่สำคัญ ของโอเวอร์โหลดรีเลย์ ดังนี้
1. ปุ่มปรับกระแส(RC.A)
2. ปุ่มทริพ(TRIP)
3. ปุ่มรีเซ็ท(RESET)
4. จุดต่อไฟเข้าเมนไบมีทอล
5. จุดต่อไฟออกจากเมนไบมีทอล
6. หน้าสัมผัสช่วยปกติปิด(N.O.)
7. หน้าสัมผัสช่วยปกติเปิด(N.C.)
overload_relay

หลักการทำงาน 
โอเวอร์โหลดมี ขดลวดความร้อน (Heater) พันกับแผ่นไบเมทัล (Bimetal)(แผ่นโลหะผลิตจากโลหะต่างชนิดกันเชื่อมติดกัน เมื่อได้รับความร้อนแผ่นโลหะจะโก่งตัว ขดลวดความร้อนซึ่งเป็นทางผ่านของกระแสไฟฟ้าจากแหล่งจ่ายไฟไปมอเตอร์ เมื่อกระแสไหลเข้าสูงในระดับค่าหนึ่ง ส่งผลขดลวดความร้อนทำให้แผ่นไบเมทัลร้อน และ โก่งตัว ดันให้หน้าสัมผัสปกติปิด N.C. ของโอเวอร์โหลดที่ต่ออนุกรมอยู่กับแผงควบคุมเปิดวงจร ตัดกระแสไฟฟ้า จากคอล์ยแม่เหล็กของคอนแทกเตอร์ ทำให้หน้าสัมผัสหลัก (Main Contact) ของคอนแทกเตอร์ ปลดมอเตอร์ออกจากแหล่งจ่าย ไฟ ป้องกันมอเตอร์ความเสียหาย จากไฟเกินได้ 

ชนิดของ Overload Relay

โอเวอร์โหลดรีเลย์แบบธรรมดา คือ เมื่อแผ่นไบเมทัลงอไปแล้วจะกลับมาอยู่ตำแหน่งเดิม เมื่อเย็นตัวลงเหมือนในเตารีด 
ภาพ Overload Relay

โอเวอร์โหลดรีเลย์แบบที่มีรีเซ็ท (Resetคือ เมื่อตัดวงจรไปแล้ว หน้าสัมผัสจะถูกล็อกเอาไว้ ถ้าต้องการจะให้วงจรทำงานอีกครั้ง ทำได้โดยกดที่ปุ่ม Reset ให้หน้าสัมผัสกลับมาต่อวงจรเหมือนเดิม 
อุปกรณ์ไฟฟ้าโรงงานอุตสาหกรรม
สัญลักษณ์ แบบมี Reset
อุปกรณ์ไฟฟ้าโรงงาน โอเวอร์โหลด รีเลย์
เมื่อไฟเกิน หน้าสัมผัสเปิด ต้องกด Reset

แมกเนติกคอนแทกเตอร์รีเลย์

Magnetic Contactor Relay

แมกเนติกคอนแทกเตอร์ รีเลย์

แมกเนติกคอนแทกเตอร์ (Magnetic Contactor) และ รีเลย์(Relay) 

แมกเนติกคอนแทกเตอร์ (Magnetic Contactor) และ รีเลย์(Relay)

 


แมกเนติกคอนแทกเตอร์ (Magnetic Contactor)
       มกเนติกคอนแทกเตอร์ (Magnetic Contactor) หรือแมกเนติกสวิทซ์ (Magnetic Switch)เป็นอุปกรณ์ที่ใช้ในการตัดต่อวงจรไฟฟ้า ในการปิดเปิดของหน้าสัมผัสนั้นอาศัยจะอำนาจแรงแม่เหล็ก สามารถประยุกต์ใช้กับวงจรควบคุมต่างๆ เช่น วงจรควบคุมมอเตอร์ เป็นต้น
ส่วนประกอบสำคัญของแมกเนติกคองแทกเตอร์ (Magnetic Contactor)
 
1. Coil หรือ ขดลวดสำหรับสร้างสนามแม่เหล็ก
2. Spring เป็นสปริงสำหรับผลัก Moving Contact ออกเมื่อไม่มีกระแสไปเลี้ยง Coil
3. Moving Core เป็นแกนเหล็กที่สามารถเคลื่อนที่ได้
4. Contact หรือ หน้าสัมผัส เป็นส่วนประกอบที่ใช้ตัดต่อวงจรไฟฟ้า
5. Stationary Core เป็นแกนเหล็กที่อยู่กับที่
 
 
หลักการทำงานของแมกเนติกคองแทกเตอร์ (Magnetic Contactor)
      เมื่อมีกระแสไฟฟ้าไหลผ่านไปยังขดลวดสนามแม่เหล็ก(Solidnoid)  ที่ขากลางของแกนเหล็กจะสร้างสนามแม่เหล็กที่แรงสนามแม่เหล็กจะสามารถชนะแรงสปริงได้ ดึงให้แกนเหล็กชุดที่เคลื่อนที่ (Moving Contact) เคลื่อนที่ลงมาพร้อมกับหน้าสัมผัส คอนแทคทั้งสองชุดจะเปลี่ยนสภาวะการทำงานคือ คอนแทคปกติปิดจะเปิดวงจรจุดสัมผัสออก และคอนแทคปกติเปิดจะต่อวงจรของจุดสัมผัส เมื่อไม่มีกระแสไฟฟ้าไหลผ่านเข้าไปยังขดลวด สนามแม่เหล็กคอนแทคทั้งสองชุดก็จะกลับไปสู่สภาวะเดิม ดังรูปข้างล่าง
การทำงานของรีเลย์
          เป็นอุปกรณ์ทำหน้าที่เป็นสวิตช์มีหลักการทำงานคล้ายกับ ขดลวดแม่เหล็กไฟฟ้าหรือโซลินอยด์ (solenoid) หรือสามารถเรียกว่าเป็นแมกเนติกคอนแทกชนิดหนึ่งเลยก็ว่าได้ รีเลย์ใช้ในการควบคุมวงจร ไฟฟ้าได้อย่างหลากหลาย รีเลย์เป็นสวิตช์ควบคุมที่ทำงานด้วยไฟฟ้า แบ่งออกตามลักษณะการใช้งานได้เป็น 2 ประเภทคือ
  • รีเลย์กำลัง (power relay)หรือมักเรียกกันว่าคอนแทกเตอร์ (Contactor or Magneticcontactor)ใช้ในการควบคุมไฟฟ้ากำลัง มีขนาดใหญ่กว่ารีเลย์ธรรมดา
  • รีเลย์ควบคุม (control Relay) มีขนาดเล็กกำลังไฟฟ้าต่ำ ใช้ในวงจรควบคุมทั่วไปที่มีกำลังไฟฟ้าไม่มากนัก หรือเพื่อการควบคุมรีเลย์หรือคอนแทกเตอร์ขนาดใหญ่ รีเลย์ควบคุม บางทีเรียกกันง่ายๆ ว่า "รีเลย์"
การแบ่งชนิดของรีเลย์สามารถแบ่งได้ 11 แบบ คือ
    ชนิดของรีเลย์แบ่งตามลักษณะของคอยล์ หรือ แบ่งตามลักษณะการใช้งาน (Application) ได้แก่รีเลย์ดังต่อไปนี้
 รีเลย์กระแส (Current relay) คือ รีเลย์ที่ทำงานโดยใช้กระแสมีทั้งชนิดกระแสขาด (Under- current) และกระแสเกิน (Over current)
รีเลย์แรงดัน (Voltage relay) คือ รีเลย์ ที่ทำงานโดยใช้แรงดันมีทั้งชนิดแรงดันขาด (Under-voltage) และ แรงดันเกิน (Over voltage)
รีเลย์ช่วย (Auxiliary relay) คือ รีเลย์ที่เวลาใช้งานจะต้องประกอบเข้ากับรีเลย์ชนิดอื่น จึงจะทำงานได้
รีเลย์กำลัง (Power relay) คือ รีเลย์ที่รวมเอาคุณสมบัติของรีเลย์กระแส และรีเลย์แรงดันเข้าด้วยกัน
รีเลย์เวลา (Time relay) คือ รีเลย์ที่ทำงานโดยมีเวลาเข้ามาเกี่ยวข้องด้วย ซึ่งมีอยู่ด้วยกัน 4แบบ คือ
รีเลย์กระแสเกินชนิดเวลาผกผันกับกระแส (Inverse time over current relay) คือ รีเลย์ ที่มีเวลาทำงานเป็นส่วนกลับกับกระแส
รีเลย์กระแสเกินชนิดทำงานทันที (Instantaneous over current relay) คือรีเลย์ที่ทำงานทันทีทันใดเมื่อมีกระแสไหลผ่านเกินกว่าที่กำหนดที่ตั้งไว้
รีเลย์แบบดิฟฟินิตไทม์เล็ก (Definite time lag relay) คือ รีเลย์ ที่มีเวลาการทำงานไม่ขึ้นอยู่กับความมากน้อยของกระแสหรือค่าไฟฟ้าอื่นๆ ที่ทำให้เกิดงานขึ้น
รีเลย์แบบอินเวอสดิฟฟินิตมินิมั่มไทม์เล็ก (Inverse definite time lag relay) คือ รีเลย์ ที่ทำงานโดยรวมเอาคุณสมบัติของเวลาผกผันกับกระแส (Inverse time) และ แบบดิฟฟินิตไทม์แล็ก (Definite time lag relay) เข้าด้วยกัน
รีเลย์กระแสต่าง (Differential relay) คือ รีเลย์ที่ทำงานโดยอาศัยผลต่างของกระแส
รีเลย์มีทิศ (Directional relay) คือรีเลย์ที่ทำงานเมื่อมีกระแสไหลผิดทิศทาง มีแบบรีเลย์กำลังมีทิศ (Directional power relay) และรีเลย์กระแสมีทิศ (Directional current relay)
รีเลย์ระยะทาง (Distance relay) คือ รีเลย์ระยะทางมีแบบต่างๆ ดังนี้
รีแอกแตนซ์รีเลย์ (Reactance relay)
อิมพีแดนซ์รีเลย์ (Impedance relay)
โมห์รีเลย์ (Mho relay)
โอห์มรีเลย์ (Ohm relay)
โพลาไรซ์โมห์รีเลย์ (Polaized mho relay)
ออฟเซทโมห์รีเลย์ (Off set mho relay)
- รีเลย์อุณหภูมิ (Temperature relay) คือ รีเลย์ที่ทำงานตามอุณหภูมิที่ตั้งไว้
- รีเลย์ความถี่ (Frequency relay) คือ รีเลย์ที่ทำงานเมื่อความถี่ของระบบต่ำกว่าหรือมากกว่าที่ตั้งไว้
 
- บูคโฮลซ์รีเลย์ (Buchholz ‘s relay) คือรีเลย์ที่ทำงานด้วยก๊าซ ใช้กับหม้อแปลงที่แช่อยู่ในน้ำมันเมื่อเกิด      ฟอลต์ ขึ้นภายในหม้อแปลง จะทำให้น้ำมันแตกตัวและเกิดก๊าซขึ้นภายในไปดันหน้าสัมผัส ให้รีเลย์ทำงาน

อุปกรณ์ไฟฟ้าในเครื่องปรับอากาศ

อุปกรณ์ไฟฟ้าในเครื่องปรับอากาศ

 Current Relay

- ป้องกันความเสียหายของ Motor และ Load
- ป้องกันกระแสเกินหรือกระแสตก
- ตั้งหน่วงเวลาได้ 0 -10 วินาที
- ตั้งหน่วงเวลาขณะสตาร์ทได้ 0 - 30 วินาที
- SPDT Relay Output

            Current Relay CR 95 เป็นอุปกรณ์อิเล็กทรอนิกส์ ใช้ป้องกันกระแสไฟฟ้าสูงกว่าค่ากำหนด (Over Current) หรือกระแสไฟฟ้าต่ำกว่าค่ากำหนด (Under Current) Current Relay จะตรวจสอบค่ากระแสไฟฟ้า เมื่อกระแสเกินกว่าค่าที่ตั้งไว้ รีเลย์จะทำงานพร้อมทั้งมี LED สีแดงติดสว่าง การตั้งค่ากระแส ใช้ปุ่มปรับ "CURRENT" การทำงานของรีเลย์สามารถตั้งหน่วงเวลาได้ 0 - 10 วินาที โดยปรับปุ่ม "DELAY" นอกจากนี้ยังสามารถตั้งหน่วงเวลา เฉพาะในขณะเริ่มสตาร์ท ("START DELAY") ได้ 0 - 30 วินาที เพื่อป้องกัน Starting Current ทำให้รีเลย์ทำงาน Current Relay สามารถนำไปใช้ป้องกันอุปกรณ์ไฟฟ้าได้หลายลักษณะ เช่น
  • ป้องกันมอเตอร์ Over Load ซึ่งความไวของ Current Relay นี้จะไวกว่าชุด Overload ชนิด Bimetal ที่ใช้ทั่วไปทำให้ สามารถป้องกันความเสียหายที่จะเกิดกับมอเตอร์และโหลดของมอเตอร์ได้ดีกว่า
     
  • ในงานบางอย่าง ถ้ากระแสมีค่าต่ำกว่าปกติ (Under Current) จะเกิดความเสียหายได้ เช่น ฮีทเตอร์ขาด, สายพานขาดหรือปั๊มพ์ทำงานโดยไม่มีของเหลวไหลผ่านซึ่ง Current Relayสามารถใช้ป้องกันความเสียหายเหล่านี้ได้





ฮอตไวร์รีเลย์ (Hot Wire Relay)  





  ส่วนประกอบของแอร์    
ฮอตไวร์รีเลย์ (Hot Wire Relay)
    หลักการทำงานของฮอตไวร์รีเลย์ขึ้นอยู่กับผลของความร้อนที่เกิดขึ้นกับลวดความร้อน (Hot Wire) ในขณะที่สตาร์ตมอเตอร์ กระแสจะสูงผ่านลวดความร้อนเกิดการขยายตัว ทำให้หน้าสัมผัสของรีเลย์ที่ต่อไปยังขดลวดของมอเตอร์จากออก ซึ่งเป็นการตัดขดลวดสตาร์ตออกจากวงจร 

ฮอตไวร์รีเลย์ประกอบด้วยหน้าสัมผัส 2 ชุดคือ 

1. หน้าสัมผัส S ซึ่งต่อเป็นอนุกรมอยู่กับขดลวดสตาร์ตของมอเตอร์ 
2. หน้าสัมผัส M ซึ่งต่อเป็นอนุกรมอยู่กับขดลวดของมอเตอร์ 

  ตามปกติหน้าสัมผัสทั้งคู่ของรีเลย์ชนิดนี้จะต่อกันอยู่ ฉะนั้นในช่วงจังหวะสตาร์ตมอเตอร์ทั้งขดลวดสตาร์ตและขดลวดรันจึงอยู่กับวงจร ในช่วงจังหวะการสตาร์ตนี้กระแสจะสูง และผ่านลวดความร้อนทำให้เกิดการขยายตัว ดึงเอาหน้าสัมผัส S ให้จากออกซ่วงเป็นการตัดขดลวดสตาร์ตออกจากวงจร ภายหลังจากที่ขดลวดสตาร์ตถูกตัดออกจากวงจรแล้ว กระแสซึ่งผ่านลวดความร้อนและขดลวดรันของมอเตอร์ยังคงทำให้มอเตอร์หมุนตามปกติอยู่ และคงมีความร้อนเพียงพอที่จะพึงให้หน้าสัมผัส S จากอยู่ตลอดเวลา แต่ไม่มากพอที่จะขยายตัวจนหน้าสัมผัส M จากออก  





รีเลย์ช่วยสตาร์ตชนิดทำงานด้วยค่าความต่างศักย์ไฟฟ้า (Potential Relay)

รีเลย์ช่วยสตาร์ตชนิดทำงานด้วยค่าความต่างศักย์ไฟฟ้า ใช้ในวงจรที่มอเตอร์ของคอมเพรสเซอร์ต่อแบบ CSR โดยอาศัยค่าความต่างศักย์ที่เกิดจากขดลวดสตาร์ตของมอเตอร์กระทำผ่านขดลวดในรีเลย์ ทำการตัดหน้าสัมผัสในรีเลย์ จึงเรียกรีเลย์ชนิดนี้ว่า Potential Relay

เทอร์โมสตัส อุปกรณ์ที่ทำหน้าที่ควบคุมอุณหภูมิภายในตู้เย็น

เทอร์โมสตัสเป็นอุปกรณ์ที่ทำหน้าที่ควบคุมอุณหภูมิภายในตู้เย็นหรือภายในห้องปรับอากาศให้อยู่ในช่วงที่ต้องการโดยอัตโนมัติ ในขณะที่อุณหภูมิในตู้เย็นหรือในห้องปรับอากาศยังสูงอยู่ หน้าสัมผัสของเทอร์โมสตัสจะต่ออยู่ มอเตอร์คอมเพรสเซอร์จะทำงานดูดอัดสารความเย็น ทำให้เกิดผลความเย็นที่อีวาพอเรเตอร์ และเมื่ออุณหภูมิภายในตู้เย็นหรือในห้องปรับอากาศลดต่ำลงถึงจุดที่ตั้งไว้ หน้าสัมผัสของเทอร์โมสตัสจะแยกจาก ทำให้มอเตอร์คอมเพรสเซอร์หยุดทำงาน จนกระทั้งอุณหภูมิภายในห้องปรับอากาศสูงขึ้นอีก หน้าสัมผัสของเทอร์โมสตัตจะต่ออีกครั้งหนึ่ง ทำให้คอมเพรสเซอร์เริ่มทำงานใหม่ ซึ่งเป็นการควบคุมอุณหภูมิภายในตู้เย็นหรือภายในห้องปรับอากาศให้อยู่ในช่วงที่ต้องการโดยอัตโนมัติ เครื่องปรับอากาศขนาดเล็กในปัจจุบัน ได้นำเอาเทอร์โมสตัสแบบอิเล็กทรอนิกส์เข้ามาใช้ในการควบคุมอุณหภูมิ

แม็กเนติกคอนแทกเตอร์ (Magnetic Contactor)

แม็กเนติกคอนแทกเตอร์ (Magnetic Contactor) เป็นสวิตซ์อีกชนิดหนึ่ง ประกอบด้วยส่วนที่สำคัญ 2 ส่วนคือ ส่วนที่เป็นขดลวดหรือคอยล์ ซึ่งเมื่อป้อนกระแสไฟฟ้าเข้าในขดลวดแล้วจะเกิดสนามแม่เหล็กขึ้น และอีกส่วนหนึ่งเป็นหน้าสัมผัสของตัวแม็กเนติคอนแทกเตอร์ ทำหน้าที่ตัดหรือต่อวงจรไฟฟ้า กำลังที่ป้อนเข้าโหลด หลักการทำงานของแม็กเนติกคอนแทกเตอร์คือ เมื่อป้อนกระแสไฟฟ้าเข้าในขดลวดจะเกิดสนามแม่เหล็กขึ้นรอบขดลวด มีอำนาจดูดเหล็กอาร์มาเจอร์ (Armature) ซึ่งแกนเหล็กนี้ปลายข้างหนึ่งจะต่ออยู่กับหน้าสัมผัสเคลื่อนที่ (Moving Contact) และปลายอีกข้างหนึ่งวางอยู่บนสปริง ซึ่งจะคอยผลักแกนเหล็กอาร์มาเจอร์ให้หน้าสัมผัสจาก เมื่อขดลวดเกิดสนามแม่เหล็กและมีอำนาจมากกว่าแรงดันสปริง แกนอาร์มาเจอร์จะถูกดูด ทำให้หน้าสัมผัสต่อกัน และเมื่อตัดกระแสไฟฟ้าที่ป้อนเข้าขดลวด อำนาจแม่เหล็กรอบขดลวดจะหมดไป แรงดันสปริงจะผลักแกนเหล็กอาร์มาเจอร์ให้หน้าสัมผัสจากออก
หน้าสัมผัสของแม็กเนติกคอนแทกเตอร์ในหนึ่งตัวอาจจะมีขั้วเพียงขั้วเดียว หรือ 2 ขั้ว หรือ 3 ขั้วก็ได้ และหน้าสัมผัสอาจเป็นแบบปกติเปิดทั้งหมด หรืออาจจะมีทั้งหน้าสัมผัสปกติเปิดและปกติปิดสลับกันก็ได้ ทั้งนี้ขึ้นอยู่กับแบบและวงจรการควบคุม
การเลือกแม็กเนติกคอนแทกเตอร์เพื่อใช้งานต้องคำนึงถึงหลักเบื้องต้นดังนี้
  1. ขนาดของแรงเคลื่อนไฟฟ้าที่ป้อนเข้าขดลวดของแม็กเนติกคอนแทกเตอร์ จะมีขนาด คือ 6 โวลต์ DC, 12 โวลต์ DC, 24 โวลต์ AC, 48 โวลต์ AC, 220 โวลต์ AC และ 380 โวลต์ AC เป็นต้น
  2. ขนาดการทนกระแสของหน้าสัมผัส จะขึ้นอยู่กับการกินกระแสของโหลดที่ต้องการควบคุมซึ่งมีขนาดคือ 20, 25, 30, 40, 50 และ 60 แอมแปร์ หรือมากกว่าขึ้นไป เป็นต้น
  3. จำนวนขั้วของหน้าสัมผัส จะขึ้นอยู่กับจำนวนสายไฟที่ต้องการควบคุมการตัด-ต่อ เช่น ถ้าต้องการตัด – ต่อวงจรที่มีสายไฟ 3 เส้น ก็ต้องใช้หน้าสัมผัส 3 ขั้ว เป็นต้น
  4. ชนิดของหน้าสัมผัสจะขึ้นอยู่กับโหลดที่ต้องการใช้งาน และขนาดของกระแสไฟ

รีเลย์ (Relay) ทีใช้ในงานเครื่องทำความเย็น

รีเลย์ (Relay) ทีใช้ในงานเครื่องทำความเย็นจะต่อเข้ากับวงจรมอเตอร์คอมเพรสเซอร์ เพื่อทำหน้าที่ตัดไฟฟ้าซึ่งเข้าเลี้ยงขดลวดสตาร์ตออกจากวงจรเมื่อมอเตอร์หมุนออกตัวได้แล้ว เช่นเดียวกับสวิตซ์แรงเหวี่ยงหนีศูนย์ที่อยู่ภายในมอเตอร์ ซึ่งจะคอยตัดขดลวดสตาร์ตออกจากววจรโดยอัตโนมัติ เมื่อมอเตอร์หมุนและมีความเร็วรอบตามเกณฑ์แล้ว แต่โดยที่มอเตอร์คอมเพรสเซอร์แบบเฮอร์เมติกไม่สามารถติดตั้งสวิตซ์แรงเหวี่ยงหนีศูนย์เข้าไว้ภายในตัวเรือนได้ จึงจำเป็นต้องใช้รีเลย์ต่อเข้ากับวงจรภายนอกทำหน้าที่แทน ซึ่งรีเลย์ที่พบใช้ในงานเครื่องทำความเย็น แบ่งออกได้ดังนี้
  1. เคอร์เรนต์รีเลย์ (Current Relay)
  2. โพเทนเชียลรีเลย์ (Potential Relay)
  3. ฮอตไวร์รีเลย์ (Hot Wire Relay)
ตามปกติขดลวดสตาร์ตของมอเตอร์ควรจะมีไฟเลี้ยงในจังหวะสตาร์ตเพียงช่วงสั้น ๆ ประมาณ 3-4 วินาที เพราะถ้าปล่อยให้กระแสไฟฟ้าผ่านเข้าเลี้ยงขดลดสตาร์ตนานเกินไป ขดลวดสตาร์ตอาจร้อนจัด ทำให้เกิดอันตรายต่อมอเตอร์ได้ ฉะนั้นในการทำงานที่ถูกต้อง รีเลย์ที่ใช้ต้องให้ได้ขนาดพอดีกับมอเตอร์ การซ่อมเปลี่ยนรีเลย์ใหม่จะต้องแน่ใจว่ารีเลย์ใหม่นี้มีขนาดและคุณสมบัติในการใช้งานเท่ากับรีเลย์ตัวเดิมเสมอ

โอเวอร์โหลด อุปกรณ์ป้องกันมอเตอร์คอมเพรสเซอร์ชำรุด

โอเวอร์โหลดเป็นอุปกรณ์ป้องกันไม่ให้มอเตอร์คอมเพรสเซอร์เกิดการชำรุดเสียหายเมื่อระบบเครื่องทำความเย็นเกิดการขัดข้อง และถ้ามอเตอร์คอมเพรสเซอร์กินกระแสมากเกินไปโอเวอร์โหลดจะตัดวงจรไฟที่ป้อนเข้ามอเตอร์คอมเพรสเซอร์ก่อนที่ขดลวดของมอเตอร์จะไหม้
หลักการทำงานของโอเวอร์โหลดจะอาศัยหลักของโลหะ 2 ชนิดที่มีสัมประสิทธิ์การขยายตัวไม่เท่ากันมาตรึงติดกัน ในขณะที่มอเตอร์คอมเพรสเซอร์ทำงานเป็นปกติ หน้าสัมผัสของโอเวอร์โหลดจะมีไฟเข้าเลี้ยงขดลวดของมอเตอร์คอมเพรสเซอร์อยู่ตลอดเวลา และถ้ามอเตอร์คอมเพรสเซอร์กินกระแสมากเกินไปจะเกิดความร้อน โลหะทั้งสองชนิดจะขยายตัวไม่เท่ากันและจะเกิดการงอตัว ทำให้หน้าสัมผัสจากออกเพื่อตัดวงจรไฟที่เข้าเลี้ยงขดลวดของมอเตอร์คอมเพรสเซอร์ ป้องกันไม่ให้ขดลวดของมอเตอร์คอมเพรสเซอร์ไหม้และอุณหภูมิของมอเตอร์คอมเพรสเซอร์เย็นลง โลหะทั้งสองชนิดจะเกิดการหดตัวดึงให้หน้าสัมผัสของโอเวอร์โหลดต่อกันอีกครั้งหนึ่ง ทำให้มีไฟเข้าเลี้ยงขดลวดของมอเตอร์คอมเพรสเซอร์ใหม่ และถ้าอาการขัดข้องของระบบเครื่องทำความเย็นยังไม่ได้รับการแก้ไข โอเวอร์โหลดจะตัด-ต่อวงจรอยู่ตลอดเวลา ซึ่งต้องรีบตัดไฟเข้าเครื่องหรือถอดปลั๊กไฟออก และตรวจหาข้อขัดข้องทันที

มอเตอร์และคาปาซิเตอร์ในเครื่องปรับอากาศ

 

อุปกรณ์ไฟฟ้าในเครื่องปรับอากาศ

 

มอเตอร์ไฟฟ้ากระแสสลับคาปาซิเตอร์มอเตอร์(Capacitor motor)

               คาปาซิสตอร์เตอร์เป็นมอเตอร์ไฟฟ้ากระแสสลับ 1 เฟส ที่มีลักษณะคล้ายสปลิทเฟสมอเตอร์มากต่างกันตรงที่มีคาปาซิเตอร์เพิ่มขึ้นมา ทำให้มอเตอร์แบบนี้มีคุณสมบัติพิเศษกว่าสปลิทเฟสมอเตอร์ คือมีแรงบิดขณะสตาร์ทสูงใช้กระแสขณะสตาร์ทน้อยมอเตอร์ชนิดนี้มีขนาดตั้งแต่ 1/20  แรงม้าถึง 10  แรงม้า มอเตอร์นี้นิยมใช้งานเกี่ยวกับ ปั๊มนํ้า เครื่องอัดลม ตู้แช่ ตู้เย็น ฯลฯ

        ส่วนประกอบของคาปาซิเตอร์มอเตอร์โครงสร้างของคาปาซิเตอร์มอเตอร์ มีส่วนประกอบส่วนใหญ่เหมือนกับแบบสปลิทเฟส
เกือบทุกอย่าง คือ
     1. โรเตอร์เป็นแบบกรงกระรอก
     2. สเตเตอร์ประกอบด้วยขดลวด 2 ชุด คือ ชุดสตาร์ทและชุดรัน
     3. ฝาปิดหัวท้ายประกอบด้วย ปลอกทองเหลือง ( Bush ) หรือตลับลูกปืน ( Ball bearing ) สำหรับรองรับเพลา
     4. คาปาซิเตอร์หรือคอนเดนเซอร์ ( Capacitor or Condenser

 
1. โรเตอร์เป็นแบบกรงกระรอก

 
2. สเตเตอร์ประกอบด้วยขดลวด2 ชุด คือ ชุดสตาร์ทและชุดรัน

 
 3. ฝาปิดหัวท้ายประกอบด้วย ปลอกทองเหลือง( Bush )
หรือตลับลูกปืน( Ball bearing )  สำหรับรองรับเพลา


     
4. คาปาซิเตอร์หรือคอนเดนเซอร์ ( Capacitor or Condenser)
    ที่ใช้กับมอเตอร์แบบเฟสเดียวมี 3 ชนิดคือ
1. แบบกระดาษหรือPaper capasitor
2. แบบเติมนํ้ามันหรือ Oil -filled capasitor
3. แบบนํ้ายาไฟฟ้าหรือElectrolytic capasitor


     ชนิดของคาปาซิเตอร์มอเตอร์ 

     คาปาซิเตอร์มอเตอร์แบ่งออกเป็น 3 แบบคือ

     1.คาปาซิเตอร์สตาร์ทมอเตอร์ ( Capacitor start motor )
     2..คาปาซิเตอร์รันมอเตอร์ ( Capacitor run motor )
     3.คาปาซิเตอร์สตาร์ทและรันมอเตอร์ ( Capacitor start and run motor )

     




วันพุธที่ 30 พฤศจิกายน พ.ศ. 2559

Ph diagramและไซโครเมตริก

1.Ph diagram

วัฏจักรของกำรท ำควำมเย็นบน p-h ไดอะแกรม



กระบวนกำรบน p-hไดอะแกรม

 • กระบวนการจาก 1-2 เป็ นกระบวนการอัดไอ อุปกรณ์คือ คอมเพรสเซอร์(compressor)
 • กระบวนการจาก 2-3 เป็ นกระบวนการควบแน่น อุปกรณ์คือ คอนเดนเซอร์ (condenser)
 • กระบวนการจาก 3-4 เป็ นกระบวนการทอตติง (throttling)อุปกรณ์คือ วาล์วขยาย (expansion valve)
 • กระบวนการจาก 4-1เป็ นกระบวนการระเหย อุปกรณ์คือเครื่องทำระเหย (evaporator



2.แผนภูมิไซโครเมตริก (Psychometric Chart) เป็นแผนภูมิที่บอกถึงรายละเอียดของอากาศที่สภาวะต่าง ๆ เชื่อว่าหลายท่านที่ทำงานในสายงานเครื่องกล เช่น งานปรับอากาศและความเย็นคงจะรู้จักแผนภูมินี้ และการที่เราเข้าใจแผนภูมินี้จะทำให้เราเข้าใจถึงธรรมชาติและกระบวนการการเปลี่ยนแปลงของสภาวะของอากาศตลอดจนสามารถนำมาใช้งานและวิเคราะห์แก้ใขปัญหาในงานที่เกี่ยวข้องได้มากยิ่งขึ้น

ความสำคัญของอากาศและการใช้งาน    เชื่อว่าทุกคนคงจะรู้จักอากาศ (Air) กันเป็นอย่างดี อากาศมีอยู่ทุก ๆ ที่เราทุกคนใช้อากาศในการหายใจ อากาศเป็นตัวช่วยในการติดไฟของเชื้อเพลิงในการหุงต้มหรือในเครื่องยนต์หรือเครื่องจักรต่าง ๆ ในงานด้านวิศวกรรมและการผลิต อากาศถูกนำมาใช้ประโยชน์ในกระบวนการต่าง ๆ มากมาย ดังนั้นจึงเป็นสิ่งจำเป็นอย่างยิ่งที่ผู้ที่เกี่ยวข้องกับงานด้านนี้จะต้องมีความรู้เกี่ยวกับคุณสมบัติ รายละเอียดตลอดจนธรรมชาติของอากาศซึ่งถ้าเราจะอธิบายกันแบบลอย ๆ นั้นก็ยากที่จะเข้าใจแผนภูมิ (Chart) หนึ่งที่จะนำมาอธิบายคุณสมบัติของอากาศได้ดีก็คือแผนภูมิไซโครเมตริก (Psychometric Chart) ซึ่งในแผนภูมิดังกล่าวจะรวบรวมความสัมพันธ์ระหว่างตัวแปรต่าง ๆ ของอากาศให้ง่ายต่อการเข้าใจในรายละเอียด



คุณสมบัติสำคัญ ๆ ของอากาศ   ในงานทางวิศวกรรม เช่น งานปรับอากาศหรือทำความเย็นนั้นคุณสมบัติต่าง ๆ ของอากาศเป็นสิ่งที่มีผลกับสิ่งที่เราต้องการควบคุม เช่น อุณหภูมิ ความชื้นสัมพัทธ์และอื่น ๆ บทความต่อไปนี้จะอธิบายถึงคุณสมบัติต่าง ๆ ของอากาศเพื่อให้เป็นที่เข้าใจอย่างง่าย ๆ ดังนี้

วันพุธที่ 23 พฤศจิกายน พ.ศ. 2559

อุปกรณ์ควบคุมในระบบทางกล

อุปกรณ์ควบคุมในระบบทางกล

 

1.อุปกรณ์ควบคุมความดันสารทำความเย็น

ลิ้นลดความดันหรืออุปกรณ์ควบคุมอัตราการไหล ลิ้นลดความดันหรืออุปกรณ์ควบคุมอัตราการไหล (Expansion Valve) ลิ้นลดความดันหรืออุปกรณ์ควบคุมอัตราการไหล (Expansion Valve) : ใช้ติดตั้งในระบบเพื่อควบคุมปริมาณสารทำความเย็นและลดความดันของสารทำความเย็นที่จะเข้าเครื่องระเหยน้ำยาอาจจะเป็นชนิดปรับด้วยมือ ชนิดอัตโนมัติ ชนิดควบคุมด้วยความร้อน ชนิดลูกลอย รวมทั้งชนิดท่อรูเข็ม เป็นต้น ในการศึกษาเพื่อทดสอบการทำงานของลิ้นลดความดัน จะเลือกใช้ลิ้นลดความดัน
ชนิดควบคุมด้วยความร้อนที่ใช้ในเครื่องปรับอากาศรถยนต์เป็นตัวอย่างสำหรับการทดสอบ

2.อุปกรณ์ป้อง ความดันต่ำและความดันสูง HPS,LPC

 
สวิตซ์ควบคุมความดันด้านต่ำ (low pressure switch) สวิตซ์ควบคุมความดันด้านต่ำ ทำหน้าที่ควบคุมความดันด้านต่ำไม่ให้ต่ำเกินไป โดยอาศัยความดันของน้ำยาด้านความดันต่ำกระทำผ่านหน้าสัมผัส ตัดคอมเพรสเซอร์ให้หยุดทำงานเมื่อความดันต่ำกว่ากำหนด

สวิตซ์ควบคุมด้านความดันสูง (high pressure switch) สวิตซ์ควบคุมด้านความดันสูง ทำหน้าที่ควบคุมความดันด้านสูงไม่ให้สูงเกินกำหนด โดยอาศัยความดันของน้ำยาด้านความดันสูงกระทำผ่านหน้าสัมผัส ตัดคอมเพรสเซอร์ให้หยุดทำงานเมื่อความดันสูงเกินกำหนด
 

3.อุปกรณ์ป้องกันน้ำมันเข้าระบบ

 


สาเหตุที่ต้องทำท่อ Trap ในกรณีที่วางคอยล์ร้อนในตำแหน่งสูงเหนือคอยล์เย็น เนื่องจากอธิบายง่ายๆตามกฎของธรรมชาติ ที่กล่าวว่า "ของเหลวทุกชนิดจะไหลจากที่สูงลงสู่ที่ต่ำ" ในระบบเครื่องทำความเย็นก็เช่นกัน น้ำมันที่อยู่ในคอมเพรสเซอร์อยู่ในสถานะของเหลว ซึ่งน้ำมันในคอมเพรสเซอร์ มีหน้าที่ในการระบายความร้อนให้คอมเพรสเซอร์ และ หล่อลื่นระบบทางกลหรือกลไกลในคอมเพรสเซอร์ ในกรณีที่เครื่องทำงาน การดูดอัดสารทำความเย็นของคอมเพรสเซอร์ จะอัดน้ำมันที่อยู่ในตัวออกมาพร้อมสารทำความเย็นมาทางท่อทางอัด และดูดกลับเข้าไปในคอมเพรสเซอร์ทางท่อทางดูด ในการติดตั้งโดยวิธีให้ชุดคอยล์ร้อนวางในตำแหน่งต่ำกว่าคอยล์เย็น น้ำมันหล่อลื่น ย่อมไหลกลับสู่คอมเพรสเซอร์ตามแรงดึงดูดอย่างง่ายดาย แต่หากการติดตั้งที่ต้องวางคอยล์ร้อนให้สูงเหนือคอยล์เย็น ถ้าหากไม่มีการทำท่อดักน้ำมันไว้น้ำมันก็จะไหลลงได้เช่นกันเพราะในระบบท่อนั้นเป็นสูญญากาศ แต่การไหลกลับจะไหลกลับไม่ทันต่อการระบายความร้อน เนื่องจากน้ำมันมีความหนืดและน้ำหนักมากกว่าสารทำความเย็นที่มีสถานะเป็นแก๊สในท่อทางดูด ทำให้การระบายความร้อนทำได้ไม่ดี มอเตอร์คอมเพรสเซอร์ร้อนจนถึงร้อนจัด
 
 
 

 4.อุปกรณ์ป้องกันน้ำแข้งอุดตันในระบบ(ชิลเลอร์)

 
 

ตัวรีซีฟเวอร์หรือดีไฮเดรเตอร์ Receiver / Dehydrator เป็นส่วนที่สำคัญส่วนหนึ่งของระบบทำความเย็น บางครั้ง Load ของอีแวปปอเรเตอร์มากบ้างน้อยบ้าง ที่เป็นดังนี้ขึ้นอยู่กับปริมาณความร้อนความชื้น และการสูญหายของสารทำความเย็นซึ่งอาจเกิดจากการรั่วเล็กๆ น้อยๆ ดังนั้นในระบบทำความเย็นจึงต้องมีถังสำหรับเก็บสารทำความ เย็นทั้งนี้ก็เพื่อเป็นการชดเชยการสูญหายของสารทำความเย็น อุปกรณ์ชิ้นนั้นก็คือตัวรีซีฟเวอร์นั่นเอง

ตัวรีซีฟเว่อร์หรือตัวดีไฮเดรเตอร์ไดรเอ่อร์ปัจจุบันนี้บรรจุอยู่ในชุดเดียวกันและเรียกว่ารีซีฟเว่อร์
สารดูดความชื้น THE DESICCANT
สารดูดความชื้นนี้เป็นของแข็งเล็กๆ บรรจุอยู่ในตัวรีซีฟเวอร์ วัสดุที่ใช้ทำสารดูดความชื้นโดยมากใช้ เซลิก้าเจล Selica-Gel หรือ Mobil Oil สารดูดความชื้นนี้ถูกบรรจุอยู่ในรีซีฟเวอร์ ระหว่างกรองอันบนกับอันล่าง กรองทำหน้าที่เป็นตัวกรองสิ่งสกปรกในระบบ ความสามารถในการดูดความชื้นขึ้นอยู่กับความจุและปริมาตรของวัสดุที่ใช้ ตัวอย่างเช่น เซลิก้าเจล 5 คิวบิกนิ้วจะสามารถดูดและเก็บความชื้นของน้ำได้ 100 หยด ที่อุณหภูมิ 150° ฟ
ตัวกรอง THE FILTER
ตัวกรองนี้เป็นวัสดุที่ใส่ไว้ในที่สารทำความเย็นต้องผ่านก่อนที่จะออกจากตัวรีซีฟเวอร์ จุดมุ่งหมายของการมีกรอง เพื่อป้องกันสารเก็บ ความชื้นหรือของแข็งหรือสิ่งแปลกปลอมอื่นๆ หลุดออกไปกับสารทำความเย็น
 
 
 
 
 
 
 

 

วันพุธที่ 2 พฤศจิกายน พ.ศ. 2559

ส่วนประกอบเครื่องปรับอากาศ

คอยล์เย็นคืออะไร

คอยล์เย็น หรือ Evaporator คือส่วนประกอบของแอร์ อีกอย่างหนึ่งที่เราเห็นอยู่ภายในตัวอาคาร คุณสงสัยไหมว่า คอยล์เย็นคืออะไร ทำหน้าที่อะไร มีหลักการทำงานอย่างไร
คอยล์เย็นหรือ Evaporator[/caption]
หน้าที่ของคอยล์เย็นคือทำให้น้ำยาแอร์หรือสารทำความเย็นเกิดการเดือดภายในท่อ และทำให้ของไหลที่ผ่านด้านนอกท่อเย็นตัวลง ซึ่งคอยล์เย็นแบบนี้มีชื่อเรียกว่า คอยล์เย็นแบบขยายตัวโดยตรง ซึ่งภายในคอยล์เย็นจะมีท่อที่ติดตั้งครีบระบายความร้อน เพื่อเพิ่มประสิทธิภาพในการถ่ายเทความร้อน คอยล์เย็นแบบขยายตัวโดยตรงที่ใช้งานกับระบบปรับอากาศ จะควบคุมอัตราการไหลของน้ำยาแอร์หรือสารทำความเย็นโดยวาล์วขยายตัว เพื่อให้ไอสารทำความเย็นที่ออกจากคอยล์เย็นมีสภาวะเป็นไอร้อนยิ่งยวด
แต่ยังมีคอยล์เย็นอีกแบบหนึ่ง คือ แบบที่ทำให้สารทำความเย็นเหลวไหลเวียน หรือ ถูกดูดเข้าไปยังคอยล์เย็นที่ความดันและอุณหภูมิต่ำเป็นจำนวนมากอย่างเหลือเฟือ ซึ่งของเหลวบางส่วนจะเดือดไปในคอยล์เย็น แต่ยังคงเปียกและท่วมอยู่ที่ปากทางออก ส่วนที่เป็นของเหลวจะถูกแยกออก ยังคงเหลือเฉพาะส่วนที่เป็นไอไปเข้าคอมเพรสเซอร์ ในระบบทำความเย็นที่มีอุณหภูมิต่ำมาก ๆ มักจะใช้คอยล์เย็นแบบนี้ เนื่องจากมีข้อได้เปรียบที่มีผิวภายในเปียกตลอดทั้งคอยล์เย็น และประสิทธิภาพในการถ่ายเทความร้อนสูงกว่า
หน้าที่ของคอลย์เย็นก็มีแค่นี้ครับ ส่วนข้อมูลเชิงลึกนั้นจะไม่ขอพูดถึงนะครับ ใครสนใจข้อมูลที่ลึกกว่านี้ ก็หาหนังสือมาศึกษาต่อครับ เพราะมันยาวมากๆ

เนื้อหาที่เกี่ยวข้อง:

  • คอยล์เย็น
  • คอล์ยเย็น
  • คอยล์เย็น คือ
  • evaporator คืออะไร
  • ส่วนประกอบของเครื่องปรับอากาศ
  • ส่วนประกอบของแอร์บ้าน
  • คอยล์เย็นคือ
  • ราคาคอยล์เย็นแอร์บ้าน
  • ปัญหาแอร์บ้าน
  • คอยเย็น คือ

    คอมเพรสเซอร์แบบโรตารี่

    คอมเพรสเซอร์แบบโรตารี่เป็นคอมเพรสเซอร์แอร์ชนิดหนึ่งที่นิยมใช้กัน คอมเพรสเซอร์แบบโรตารี่มีข้อดีและข้อเสียอย่างไร ทำงานอย่างไร แตกต่างจากคอมเพรสเซอร์แบบลูกสูบอย่างไร มาลองศึกษากันดูครับ
    คอมเพรสเซอร์แอร์บ้านโรตารี่
    คอมเพรสเซอร์แอร์บ้านโรตารี่
    คอมเพรสเซอร์แบบโรตารี่ เป็นการออกแบบที่จะไม่มีลูกสูบในคอมเพรสเซอร์ แต่จะใช้สิ่งที่คล้ายๆใบพัดที่จะหมุนอยู่ภายในคอมเพรสเซอร์แบบโรตารี่ เพื่อที่จะนำพาน้ำยาแอร์เข้าทางด้าน Suction และผลักออกมาทางด้าน Discharge. (โดยปกติน้ายาแอร์ในด้าน suction จะเป็นก๊าซ และเมื่อส่งผ่านให้ออกไปทางด้าน discharge ก็จะมีความดันมากขึ้น หลังจากนั้นน้ำยาแอร์สถานะก๊าซ ก็จะเปลี่ยนสถานะเป็นของเหลวอีกครั้งเมื่อผ่าน condensor อันนี้เป็น concept ของหน้าที่คอมเพรสเซอร์ครับ)
    ข้อดีของคอมเพรสเซอร์แบบโรตารี่
    จากผลการทดลองของเมืองนอก โรตารี่สามารถสร้างความเย็นได้มากสุด โดยเทียบความจุต่อปอนด์ของคอมเพรสเซอร์ขนาดเท่ากันครับ
    ข้อเสียของคอมเพรสเซอร์แบบโรตารี่
    ซ่อมยาก หรือซ่อมไม่ได้เลยสำหรับช่างครับ แต่ถ้าเป็นคอมเพรสเซอร์แบบลูกสูบก็จะซ่อมได้ง่ายกว่าครับ
    แอร์ทุกเครื่องมีคอมเพรสเซอร์อยู่ภายใน ยุคแรกๆมีเฉพาะคอมเพรสเซอร์แบบลูกสูบ แต่ในปัจจุบัน คอมเพรสเซอร์แบบโรตารี่ และคอมเพรสเซอร์แอร์แบบสโกล์ โดยทั่วไป คอมเพรสเซอร์แบบโรตารี่จะทำงานเงียบและกินไฟน้อยกว่า จึงได้รับความนิยมมากขึ้น แต่จะมีขนาดจำกัด ส่วนคอมเพรสเซอร์แอร์แบบสโกล์ รุ่นใหม่ที่กำลังได้รับความนิยม และมีขนาดที่ใหญ่ขึ้นคอมเพรสเซอร์รุ่นใหม่ๆยังมักจะออกแบบให้ใช้งานร่วมกับอุปกรณ์ปรับรอบหรืออินเวอร์เตอร์ด้วย

    เนื้อหาที่เกี่ยวข้อง:

    • คอมเพรสเซอร์ แบบ ลูกสูบ
    • คอมเพรสเซอร์ แบบ โรตารี่
    • คอมเพรสเซอร์ แบบโรตารี่
    • ส่วนประกอบคอมเพรสเซอร์แบบโรตารี่
    • ชนิดคอมเพรสเซอร์
    • หลักการทํางาน คอมเพรสเซอร์แบบโรตารี่
    • คอมโรตารี่
    • คอมเพรสเซอร์โรตารี่ คือ
    • คอมแอร์แบบโรตารี่
    • คอมแอร์โรตารี่